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Classical linear stability theory is extended to include the effects of temperature- and 
pressure-dependent fluid properties. These effects are studied asymptotically by 
using Taylor series expansions for all the properties with respect to temperature and 
pressure. In this asymptotic approach all effects are well separated from each 
other, and only the Prandtl number remains as a parameter. In their general form 
the asymptotic solutions hold fqr all Newtonian fluids. A shooting technique with 
Gram-Schmidt orthonormalizatidn for the zero-order equation (classical Orr- 
Sommerfeld problem) and a multiple shooting method for all other equations is 
applied to solve the stiff differential equations. In particular the zero- and first-order 
equations are solved for a flat-plate boundary-layer flow with temperature-dependent 
viscosity. Physically, this corresponds to a fluid with a linear viscosity/temperature 
relation. The results show that decreasing the viscosity in the near-wall region of the 
boundary layer stabilizes the flow, whereas it would be destabilized for a uniformly 
decreased viscosity. 

1. Introduction 
Among the studies that have investigated the stability of laminar boundary-layer 

flows, only a few have taken into account the effeot of variable properties, even 
though non-constant properties can have a strong ,effect on the critical Reynolds 
number. For example, Wazzan et al. (1972) invcstigatcd the boundary-layer stability 
of water under non-isothermal conditions. They found that the critical Reynolds 
number for a heated flat-plate boundary layer in water varies between 520 and 
nearly 16000. Other studies of forced-convection stability which take into account 
variable-property effects in a more or less systematic way are those by Hauptmann 
(1968), Lee, Chen & Armaly (1990) and Asfar, Masad & Nayfeh (1990). Natural- 
convection flows with variable property effects beyond that of the Boussinesq 
approximation were studied by Sabhapathy & Cheng (1986) and Chen & Pearlstein 
(1989), for example. 

The present study outlines a general method which includes the effect of small 
temperature and pressure variations on the physical properties. Results of this 
analysis will hold for all Newtonian fluids instead of just one particular fluid. The 
basic approach starts from a Taylor series expansion of the properties with respect 
to temperature and pressure. Next, a regular perturbation is applied to the basic 
equations of stability with the constant-property case representing leading-order 
behaviour . 

The basic stability equations which allow for the variation of all physical 
properties are given in $2. In $3, the regular perturbation procedure is described in 
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detail. The method is then applied to the case of temperaturc-dependent viscosity in 
$4. Specific results based on the numerical solutions of the zero- and first-order 
equations are provided in 95 for the flat-plate boundary layer. In the discussion, $6, 
the general asymptotic results are compared to the results of Wazzan et al. (1972) by 
specifying the Prandtl number to match the particular fluid of that  study. 

2. Basic equations 
For constant Properties, the fundamental differential equation in the so-called 

method of small disturbances is the Orr-Sommerfeld (0s) equation, see for example 
Schlichting (1982). Squire (1933) has shown that it is sufficient to  consider two- 
dimensional disturbances. For variable properties, the same result was found by Yih 
(1955) by extending the method of Squire. 

The present analysis presents an extended version of the 0s equation which holds 
when all physical properties vary. To keep it as general as possible the equation is 
non-dimensionalized with a reference length L z  and a reference velocity U;,  which 
are specified later. All dimensional quantities are starred, and all complex quantities 
are marked by the symbol *. In  the method of small disturbances all quantities are 
decomposed into a mean value, a*: and a superimposed disturbance a'* Here, a* 
represents the velocity components u* and u* (two-dimensional flow) and the 
pressure p*. When variable properties are involved, it also represents these 
properties, i.e. density p*,  viscosity p*, thermal conductivity k* and specific heat c:, 
as wcll as the temperature T*. Owing to the temperature dependence of the 
properties, the modified 0s equation must be supplemented by the thermal energy 
equation for the disturbance. 

The common assumption (e.g. Schlichting 1982) is that any arbitrary two- 
dimensional disturbance can be expanded in a Fourier series ; thus a single oscillation 
of the disturbance is assumed to  be of the form (temporal stability) 

$'*(~*:y*,t*) = $*(y*)exp[ia*(x*-t*t*)]. (2.1) 

I n  (2.1) a* is real with 2n/a* being the wavelcngth of the disturbance. The 

(2.2) 
quantity ĉ * is complex, 

c^* = c: + ic:. 
Here c: denotes the phase velocity whereas c: determines the degree of amplification 
or damping. 

From the Navier-Stokes equations and the thermal energy equation (both for 
variable properties), together with the continuity equation, the following linearilzed 
differential equations for the dimensionless amplitude functions C( y), $( y) and 8( y) 
are derived by inserting (2.1), subtracting the mean flow equations, and eliminating 
the pressure in the momentum equations : 
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= 0, (2 .4 )  I +2p'($"-a2Q)+p'r + ~ ( a " ' + a 2 a ' ) + 2 ~ f a N + ~ a '  

i d p  - 
a dx 

F( 1 + eg)  (a-e)$--- [p( 1 + eg) Zi + ( I (  1 + eg) +Pd) a] 

which are, respectively, the Reynolds, Froude, Prandtl and Eckert numbers. As 
usual, quadratic terms are neglected (linear stability theory) and mean-flow 
quantities are assumed to  be only y-dependent (parallel-flow assumption). The 
notation a' denotes the derivative of a with respect to y. 

The associated boundary conditions for the boundary-layer mean flow are 

( 2 . 6 ~ )  

(2 .6b )  

The thermal expansion coefficient p* in ( 2 . 5 ) ,  associated with the work done by 
compression, is /3* = - (ap* /aT*) /p*  with /3 = p*T;II. It is formally treated as extra 
property, but is physically related to  the density p*. The quantities K and e in the 
compression work terms are defined in (3 .2 )  below. For constant density p* is zero. 
In  ( 2 . 4 ) ,  is an angle measured from a line perpendicular to g*. All equations are 
non-dimensionalized with respect to  a reference state R.  The non-dimensional 
tlemperature of the mean flow is e=  (T*-Tg) /AT; ;  the amplitude function is 
0 = p*/AT;.  Here AT; denotes a characteristic temperature difference of the flow 
field. For constant properties, p = p = E = cP = 1 and b = 

When the viscosity varies but all other properties are constant, the yntinuity 
equation (2 .3 )  reduces to  Zi+v"'/ia = 0. I n  this case a stream function 4 can be 
introduced by 

For later use, the basic equations are also given for this case. Neglecting viscous 
dissipation effects (Ec + 0 asymptotically), the basic equations for variable viscosity 
are 

4T 

= k = ZP = 0. 

zi = $', 4 = -ia$. (2 .7 )  

(a- 8) (& - -g$ + -{p(@ 1 - 2a2$"+ + zp'(4"' - 
aRe 

+ p"( $" + a'$) + ,&( u"" + a2@') + 2c;'fZ' + ,?a'} = 0, (2.8) 

Equation (2 .8 )  is identical to the equation derived by Wazzan et al. (1972) when 
I; = 0 is assumed. They neglect temperature fluctut$pns coypletely (but without 
giving a justification). The boundary conditions for $, 4' and 0 are zero for y = 0 and 
y +  co according to (2 .6 ) .  
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3. Perturbation procedure 

series expansion reads 
With a* representing one of the physical properties p * ,  p* ,  k* and c:, the Taylor 

a* 

a R  
a =*= 1 + E K , , 8 + Z K , , p + O ( e 2 , 2 , ~ ~ ) ,  

Here E and 8 are introduced as small (perturbation) parameters. The Taylor series 
are truncated after the linear terms. When the series are continued to higher orders, 
additional K,-values appear which contain second and mixed derivatives for the next 
higher order. K,, and K,, are properties of the fluid (see e.g. table 1) .  

For most fluids, the pressure dependence, Kap ,  is much smaller than the 
temperature dependence, K,,. An important exception in this respect is the density 
of gases. For a perfect gas, for example, KPT = -K,, = 1, so that the pressure 
dependence cannot always be neglected. Since ZKpp = &a2 (where K = cf/c:), the 
pressure dependence of gases can be neglected for small Mach numbers only (for 
details see Herwig 1987). 

In a perturbation solution of the stability problem based on (3.1), all variable- 
property effects are independent. There is an ascending order of accuracy depending 
on how many terms of the expansion (3.1) are considered. When only linear terms are 
taken into account, we will call this a linear perturbation theory. What follows is a 
linear analysis, but extension to higher orders with respect to E and 8 is 
straightforward. 

Owing to the decomposition a = a+ Ci exp [ia(z - c"t)], equation (3.1) reads 

a = 1 + EK,, e+ XUP ,p + O( 2,2, €8) 

B = EK,, 6 + mu, ji + O( e2, P , EE") . 
(3.3a) 

(3.3b) 

The mean flow field is affected by variable-property effects through p ,  p, 2 and cP, 
whereas the stability equations (2.3)-(2.5) are affected by the mean as well as by the 
disturbance parts of the properties. 

Equation (3.3) suggests an expansion of all mean flow and disturbance quantities 
of the general form: 

a = aO +E(KpT a l p  + KpT a l p  fK,!/' alk + K c ,  % c )  

+ 8 W P p  &ip+Kpp 81, +K,,  81, + K c ,  61,) + O(s2, 2, BE)  (3.4) 
- 1 "  

In (3.4) a represents: c, 4, v, S,  p, ji, 8, 8, q5, c^. 
When only the temperature dependence of viscosity is assumed to be important, 

with all other property variations neglected, the mean flow quantities and amplitude 
functions from (3.4) read 

(3.5) c = uo + EKpT alp + 0 ( € 2 ) ,  e = eo + a,, tlp + O ( E 2 )  ; 

$ =  $o+EKp,~l,+o(E2),  i = io+EKpTB,p+O(s2). (3.6) 

In this special case, the complex parameter c" is 

c" = to + eKpT Z1, + O(e2) (3.7) 

with the amplification rate ci = cOi+eKpcl,,. A crucial step in the theory is the 
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Temperature Pressure dependence 
dependence 

K,, - 0.057 K p p  0.00005 

K, ,  0.823 K,, 0.00008 

TABLE 1. K,, and K,, for water at T;t = 293 K, p ;  = 1 bar; a A p,  p,  k, c p  

KILT -7.132 K,,, -0.00025 

K,, -0.052 K E p  -0.00006 

exppsioqof the parameter c  ̂ in the same way as the expansion of the functions a, 
@, q4 and 8. This leads to the specific form of first-order equation (4.9) below, from 
which tlP can be determined. 

Inserting the expansions (3.3)-(3.7) into (2.3)-(2.5) and collecting terms with 
respect to eKpT, tXPT etc., gives the asymptotic equations for the property influence. 

4. Special case : temperature-dependent viscosity, flat-plate boundary-layer 
flow 

From the expansions (3.4) it is obvious that effects of different physical properties 
are independent. Within linear theory with respect to E and E" there are no mixed 
terms of temperature and pressure dependence. Therefore, a single property effect 
will be selected to serve as an example. All other effects can be handled similarly and 
added without changing the previous solution. Each effect is a function of the 
Prandtl number only. 

A theory with temperature-dependent viscosity with all other property variations 
neglected is a good approximation for water, since the magnitude of KPT is 
considerably higher than that of all other KaT and K,, (see table 1 ) .  As an example, 
the flat-plate boundary layer with a wall a t  constant temperature T: 8 Tg was 
solved. The reference temperature Tg is the temperature TZ far away from the wall. 
The dimensionless temperature is 0 = (T*-T:)/(T$-TZ),  i.e. ATR = TZ-TZ. For 
other boundary layers (with pressure gradients) only the mean flow quantities must 
be changed. 

4.1. Mean flow quantities 
The differential equations for a flat-plate flow with temperature-dependent viscosity 
but viscous heating neglected, i.e. Ec + 0, are (Gersten & Herwig 1984) 

(PY)'+fl = 0, 
s"+PrfP = 0, 

with the boundary conditions 
- 

y = o :  f = f / = 8 - 1 = 0 ;  y + m :  f ' - 1 = 8 = 0 .  (4.3) 

Here, f(  y )  is the self-similar stream function, y = y*/Lg is the similarity variable, 
which arises in the usually defined way when Lg is set equal to [23gx*/(pg Ug)]; ,  with 
U g  = UZ (velocity outside the boundary layer). The mean velocity is E =f'. 

Inserting the expansions j i  = 1 +eK ~ + O ( E ~ )  according to (3.3a), and P f =fo +afiT fl, + O ( E ~ ) ,  @ = go + O(E)  according to (3.4), with f expanded like a, into 
(4.1) and (4.2) gives 

f[+fo& = 0, B;;+Prfog = 0, (4.4) 

f'r; +fof rP +f lfiP = - (f ;; (4.5) 
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with the associated boundary conditions from (4 .3) .  For this case, the first-order 
temperature function al,, will not be needed in the linear perturbation theory. 

Solutions f; = a(,, &(Pr)  and f; , ,(f’r)  = alp (Pr)  can be found by a standard 
Runge-Kutta integration (see e.g. Gersten & Herwig 1984). 

4.2. Amplitude functions 

The stability equations (2 .8)  and (2.9), from which the amplitude functions 4 and 6 
can be determined, a;e now subject to a perturbation procedure similar to that of the 
mean flow. Now $, 8 and c“ are also expanded as previously indicated in (3 .6)  and 
(3 .7) .  The amplitude function I; according to (3 .3b)  is 

1; = €KPTi0+O(€2) .  (4.6) 

Inserting all the expansions into (2 .8)  and (2.9), and collecting terms of equal 
magnitude with respect to aPT, leads to the following set of stability equations: 

1 1  
(ao - to) (6; -a$,) -a; do + - ($f - 2a2& + a4do) = 0, (4 .7)  aRe 

1 (&-a2h0) = &$lo, 
(ao - to) oo + ~ 

a Re Pr 

1 
= - (alp - tip) (6; - a2&) + a;! fjo - -& [Go (& - 2a2& + a4do) 

+ 2 6  (&-a”;) + r& (& + a2$io) + io (a; + a%;) + 26; a; + & ti;], (4.9) 

with the associated boundary conditions 

y = o :  (4.10a) 

y = m :  $ 0 = $ ’ - $  0 -  1p = $ r  l p  = 8  0 -  -0 .  (4.10b) 

Equation (4 .7)  is the classical 0s equation for constant properties which is the zero- 
order equation of the asymptotic expansion with respect to 6.  It is well-known that 
the 0s equation describes an eigenvalue problem which owing to its stiffness is 
difficult to solve numerically (see e.g. Mack 1984). 

With these difficulties in mind, the mathematical nature of (4 .7) ,  (4.8) and (4.9) as 
well as a numerical solution procedure will be discussed in the next section. 

$ 0 0  = $ ’ = +  1P =$’ ”1P = 8  “0 - 0 ,  - 

5. Numerical solutions 
As far as the classical 0s equation is concerned, there are basically three different 

types of numerical solution procedures that have been applied successfully : shooting 
methods, finite-difference implicit solution methods, and spectral methods. In this 
investigation shooting methods were employed. 

5.1.  Zero-order momentum (classical 0s equation) 

Equation (4 .7)  for y + co reduces to  a fourth-order linear differential equation with 
constant coefficients, since a0- 1 = = 0 at  the outer edge of the boundary layer. 
Two of the four fundamental solutions of this reduced equation ($ol = exp [ -ay], 
$03 = exp [ - jy] ,  f’ = a2 + ia Re (1 - to) )  are left as non-zero solutions, when the 
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FIGURE 1.Zero-order amplitude function $,: Re = 519.1. e,, = 0 (a = 0.3034, cOr = 0.3965). Inserted 
picture shows ten subregions of orthonormalization with the two functions $03r (-) and $osi 
(----). Increasing the number of subregions will increase the computational accuracy. 

boundary conditions ( 4 .  lob) are applied. These two solutions are then integrated 
through the boundary layer. At the wall, the boundary conditions (4 .10a)  are 
satisfied when 

For example, the complex determinant b will be zero only for specific values of the 
complex eigenvalue C,, when a and Re are fixed. 

Owing to the stiffness of ( 4 . 7 )  the integration is performed by applying the so- 
called Gram-Schmidt orthonormalization. Defining a four-component function 
space 

the orthonormalization is a linear combination of the original vectors Pol and Po,, 
which are replaced by 

( 5 . 3 )  

Here, 6 refers to the complex-conjugate vector. The magnitude of f is given by 
161 = (@a)$. This allows the eigenvalues to be computed without significant round-off 
errors. For more details, see for example Mack (1976).  

From our calculations, the critical Reynolds number is Re, = 519.1. This agrees 
very well with the results of other studies (Schlichting 1982 : Re, = 5 2 0 ;  Kummerer 
1973: Re, = 521) .  

5 .2 .  Zero-order temperature 

The therqal energy stability equation (4.81 is solved to determine the amplitude 
function B,(y). This can be done only when q5,ly) is known from the solution of ( 4 . 7 ) .  
The solution procedure used in $5.1 provides $ , ( y )  only as piecewise steady functions 
in subregions of 0 < y < ye ( y e  A outer edge of the boundary laye;) as a consequence 
of the Gram-Schmidt orthonormalization. Thus, as a first step, q5,(y) must be found 
as a continuous function in 0 6 y < ye (see figure i). 

Starting from the wall, the stored results of q401 and q503 in the subregions of 
orthonormalization must be linearly combined in such a way that at the intersections 
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of the subregions continuous functions of &, = (do, &, &, &) result. This is achieved 
since el and e3 in each subregion were determined by an integration based on (5.3). 
This ‘patching procedure’ can provide Po as the continuous function needed in (4.8), 
s,ee figure 1.  Since $o can be determined from (4.7) only up to a (cornplex) constant, 
$o can be arbitrarily normalized. In figure 1 we have set max (4;) = ( I  + i l )  for 
normalization. 

The thermal energy equation (4.8) for B,(y) is a non-homogeneous linear second- 
order differential equation with zero boundary conditions. It is also a stiff differential 
equation like (4.7), and was solved by the so-called multiple shooting method (see 
Stoer & Bulirsch 1978). In  this method, the whole solution domain is cast into 
subregions. Then a first step integration is performed starting from assumed 
boundary conditions in each subregion (taking into account the boundary conditions 
a t  the wall and for y +  a). I n  subsequent steps, the discontinuities a t  the boundaries 
of the subregions are removed so that a contjnuous function 8, results. 

The outer boundary condition (4.10b) for 8, can be replaced by 

y+co: &, = -(Cr2+iaRePr(l-to))f6,. (5.4) 

This alternative boundary condition, which is more convenient for the numerical 
solution, follows from (4.8) for y e  00. 

In figure 2,  the amplitude function 8,(y) is shown for a specific set of parameters 
(Pr, Re, coi). In  these curves, the y-position of the critical layer (i.e. the position where 
fi0 = tor) is marked by an arrow. At this position, the stability equations become 
singular for 1/Re = 0 as can be seen in (2.8). For large but finite Reynolds numbers 
substantial changes may occur in the vicinity of this layer. This does not pose 
problems for the numerical solution for Reynolds numbers considered in thiqstudy. 
(Note that this layer has no special effect a t  all on the amplitude function 4, for a 
Reynolds number as low as in figure 1 !) 

5.3. First-order momentum 
Equation (4.9), as well as all higher-order momentum equations (which are not 
considered here explicitly), is a non-homogeneous differential equation of the general 
form 

(5.5) 
1 ”  

L[&, to] =j($,, o,, t ip ) ;  i >j,j = 0, ..., 

with the OS differential operator L given by 

Specific values of tip must be found for which (5 .5)  has a solution. The term 
‘ eigenvalue ’ should be used only in connection with homogeneous equations. 
Therefore, El, will be called a ‘ first-order paramet:r ’ from now on. The corresponding 
solution for the first order will be denoted by ( p  for particular solution). The 
general solution of the first-order problem then is 

since do satisfies L[d, to] = 0. Owing to thenundetermined complex constant 6 in (5.7) 
integration can start from the wall fixing $yp (0) arbitrarily, for example. Integration 
was again performed by the multiple shooting method, using tlr as shooting 
parameter. 
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FIGURE 2. Zero-order amplitude function 8,: Pr = 8.1, Re = 519.1, coi = 0. 
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FIQURE 3. First-order amplitude function &: Pr = 8.1, Re = 519.1, cOi = 0 (clpr = 0.0242, 
cIpi = 0.0923). 

The process of determining the first-order parameter E l ,  is a linear process, since 
d,, and its derivatives are not multiplied by El,.  Therefore, no iteration is neede: to 
determine el,. This is different from the process of determining to, since q50 is 
multiplied by to in (4.7). 

respectively, can 
again be replaced by an alternative form which is more suitable for numerical 
solutions iq a finite region 0 < < xe, For ~ + ~ c o ,  the right-hand” side of (4.9) is 
EJ,(q4,”-a2q50). But, for y+m, q50 = Clq501~63q503, see 55.1, yith #ol = exp[-aay], 
q503 -= $xp [ - (a2 + i a Re, (1 - Eo))4 y], so that q50 is dominated by q401 for y + 00 . With q50 
= C, q501 the term E l ,  (q5: -a2q50) is zero, so that the whole right-hand side of (4.9) is 
zero for y+ 00. As a consequence 

The outer boundary condition (4.10b) for q$, and &, 

d1, = 6, dol + 63 d o 3  for y + co (5 .8)  

d;,+ad;, = -f(d;p+adlp), &+a&, = f2(d;p+adl,). (5.9) 

holds so that (4.10b) can be replaced by 

In figure 3 the amplitude function &(y) is shoyn for the same parameters (Pr, Re, 
coi) as in figure 2. For normalization we have set q5;,(0) = (1 + i l ) .  The constant c A l p  for 
this case is tlr = 0.0242 + i0.0923. 

The influence of variable viscosity on the critical Reynolds number can be 
determined from figures 4 ( a ) 4 ( c ) .  In these figures the eigenvalue coi and the first- 
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FIGURE 4. Eigenvalues cnl (-) and firut-arder parameters clpl (----),  Pr = 8.1 for three different 
Reynolds numbers (c, = C,,,+EK,,~,,,~): ( a )  Re = 200; ( 6 )  R e  = 519.1; (c) Re = 1oOO. 

Viscosity close to the wall 

1400 1 1 I 

Re, - 

200 I 

-0.1 0 0.1 0.3 
€ K,, 

FIGURE 5. Critical Reynolds number far non-isothermal boundary-layer flows of fluids with 
temperature-dependent viscosity; E = (T ,*-TZ) /T$;  KpT = [(a,u*/t)T*) (T*/,u*)],. 

order parameter clPi are given as functions for u for three different Reynolds 
numbers. The full line is the eigcnvalue coi of the classical Orr-Sommerfeld problem. 
As the Reynolds number increases, flow instabilities occur as indicated by the 
positive values of ci. For constant properties, this occurs for RecO = 519.1 for the first 
time (see figure 4b). For variable properties, the critical Reynolds number Re, is 
reached when CO~+EK,TC~~T = 0. From figures 4(a) and 4 ( c ) ,  for example, we find 
that Re, = 200 for eKPT = 0.3412 and Re, = 1000 for eKpT = -0.1498, since then 
coi + eKPT clpi = 0 for just one u. 

Based on a large number of curvcs for coi(a) and clfii(a) like those in figure 4, we 
can find the critical Reynolds number Re, as a function of the perturbation 
parameter eKpT (KpT being an O(1) constant with respect to the asymptotic 
expansion). In  figure 5 ,  these curves are depicted for two different Prandtl numbers. 
From this figure we can conclude that the flow is stabilized when dpT < 0, since then 
the critical Reynolds number lies above that for the isothermal (constant-property) 
case. Physically this corresponds to a decrease of viscosity (compared to the reference 
viscosity ,uz) within the boundary layer, being strongest a t  the wall. This result is 
unexpected since a unique decrease of viscosity, i.e. constant-property flow with a 
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lower viscosity, destabilizes the flow (then Re, = bz U $ L g / y z ] ,  = 520 holds further 
on, so that  decreasing y z  can increase the actual Reynolds number Re above He,). 
From this we can conclude that the viscosity distribution across the boundary layer 
is an essential feature for stability characteristics of the flow. 

Based on these findings, a reference temperature concept, widely used with 
variable property flows, is not justified. In this concept, constant-property results 
are retained for variable-property flows but with all properties in the final results 
evaluated a t  a reference temperature T: with T: = TZ+j(TZ-TZ),  0 < j  < 1 
(often j = t is expected). For flat-plate boundary-layer flow, however, j would be 
negative. This again shows that the stability behaviour of constant- and variable- 
property flows are distinctly different. 

The combination dPT is negative 
( a )  for fluids with K,? < 0 that are heated ( E  > 0) (like water with K,, = -7.132 

a t  293K, 1 bar, according to table 1) .  
( b )  for fluids with KpT > 0 that  are cooled ( E  < 0) (like air with KPT = 0.733 a t  

293 K, 1 bar, according to Gersten & Herwig 1984). 
From figure 5 it can also be concluded that the stabilizing/destabilizing effect for 

a certain amount of heating (fixed E > 0) for water is much stronger than for air. For 
example, the deviation of Re,  from RecO = 519.1 is stronger for higher Prandtl 
numbers and the magnitude of KwT is nearly ten times larger for water than for air. 

6. Discussion 
As mentioned in $3  a crucial step of the whole procedure is to expand the 

parameter c" as to + eKPT CAI + O ( 2 ) .  All other studies that account for the influence of 
variable properties still solve eigenvalue problems, i.e. they still have homogeneous 
differential equations. In the present approach 6l must be determined from the non- 
homogeneous differential equation (4.9). 

For a direct comparison of these two approaches, (2.8) was solved directly, i.e. 
without expansion with respect to E .  For this purpose we set p = exp [b(T* - T z ) / T z ]  
and I; = 0, i.e. we assumed an exponential viscosity law and neglected temperature 
fluctuations. Based on these assumptions (2.8) was solved for several values of 
( T Z - T $ ) / T z .  Equation (2.8) is a modified version of the 0s equation; i t  is however 
mathematically still an eigenvalue problem with eigenvalues 2. In figure 6 the full line 
is the critical Reynolds number over the temperature difference T:-TZ from 
solutions of (2.8). The broken line is the asymptotic result from (4.7), (4.8) and (4.9). 
Deviations occur for increasing temperature difference because, in the asymptotic 
approach, higher-order terms are neglected. The effects of temperature fluctuations 
(included in the asymptotic results, but not in the direct solution of (2.8)) are 
obviously small. 

Neglecting temperature fluctuations completely (as for example Wazzan et al. 1972 
do in their study), cannot be justified from an asymptotic point of view. I n  this sense, 
it is an irrational approximation. To determine its infl:ence quantitatively, we 
calculated the first-order parameter cIpi from (4.9) with Oo = 0. The c ~ , ' ~  curves in 
figure 4 ( a ) 4  (c) are moderately changed by neglecting temperature fluctuations. 
Figure 7 compares one curve from figure 4 ( a )  (Re = 200) with the corresponding cas: 
of fluctuating temperature. For higher Reynolds numbers the influence of 0, 
decreases. 

Our final asymptotic results, which have the Prandtl number as the only solution 
parameter, can be specified for a certain fluid by specifying KILT and for a certain 
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temperature difference by specifying E .  Results for Pr = 8.1 are shown in figure 8, 
because this is the relevant Prandtl number in the study of Wazzan et al. (1972). 
Their free-stream water temperature was 60 O F  which corresponds to Pr = 8.1. 
Whereas our study holds for eKpT + O  asymptotically, their results are given for 
particular values of dPT, the lowest of which is cKpT = -0.43. (Wazzan et al. did not 
introduce E and KpT explicitly ; however we ipferred from their data what E and KPT 
would be in their study). 

Since the exponential viscosity law introduced in connection with figure 6 is that 
of Wazzan et al. (1972) the direct solutions of (2.8) could be extended to higher 
temperature differences, and thus reach a temperature difference as high as that of 
the first point in the study by Wazzan et al. (1972). This was accomplished by 
recalculating equation (1) of Wazzan et al., which is equivalent to (2.8) when 1; = 0. 
There is a strong increase in the Re,-slope for increasing heat transfer (due to higher- 
order effects from an asymptotic analysis). This is indicated by the full curve in figure 
8. This increase in slope (and not the linear interpolation which Wazzan et al. 1972 
assumed) is obviously a characteristic feature of the Re,-curve for small temperature 
differences. This kind of behaviour also occurs in a later study by Wazzan, Taghavi 
& Hsu (1978) for freon-114. 
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FIQURE 8. Comparing asymptotic and non-asymptotic results : ----, asymptotic results for 
JT$-TzI /Tz+O (this study, figure 6); ., first data point from Wazzan et al. (1972); -, 
recalculation of equation (1 )  in Wazzan et al. (1972) ; equivalent to the direct solution of our 
equation (2.8) with ji = 0. 

For all non-zero values of the perturbation parameter the regime for which the 
first-order results give adequate, quantitative information can differ from case to 
case. From the specific example of this study we conclude that the stability 
behaviour for a range of temperature differences for which the critical Reynolds 
number differs by more than 50 % is described with an error of a few percent. In  the 
range of destabilization (left part of figure 6) for example it can be expected that 
deviations between the first-order asymptotic and the exact results will always be 
small since the critical Reynolds number must be in the limited range 

isothermal‘ 

7. Conclusions 
With a combined asymptotic/numerical method (which might be called the ACFD 

approach, see Herwig 1990) the influence of variable properties on the stability 
behaviour of laminar flows can be studied in a systematic and general way. There is 
no need to specify a particular fluid from the beginning, since the final results in their 
general form hold for all Newtonian fluids. 

For the special case of a flat-plate boundary-layer flow with temperature- 
dependent viscosity, results show that decreasing the viscosity in the near-wall 
region stabilizes the flow, whereas linear stability theory predicts that a (global) 
viscosity decrease would destabilize the flow. 
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